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SUMMARY

The aim of thls study is to find a reliable numerical algorithm to calculate

thermal design sensitivities of a transient problem wlth discontinuous

derivatives. The thermal system of interest is a transient heat conduction problem

related to the curing process of a composite laminate. A logical function which can

smoothly approximate the discontinuity is introduced to modify the system

equation. Two commonly used methods, the adjolnt variable method and the direct

differentiation method, are then applied to flnd the design derivatives of the

modified system. The comparisons of numerical results obtained by these two methods

demonstrate that the direct differentiation method is a better choice to be used in

calculating thermal design sensitivity.

I. INTRODUCTION

Hlgh-performance polymeric composites have been used widely in the aerospace

and automobile industries. Such materials are commonly composed of long or chopped

fibers embedded in the thermosetting resin matrix. Changes in physical and chemical

properties of such composite materials during the curing process are rather

complex. Thus, it is not a trivial task to properly design a cure cycle

(temperature and pressure profiles) for a curing process. The material should be

cured uniformly and completely with the lowest void content; the temperature inside

the laminate must not exceed some maximum value; and the curing process should be

completed within the shortest amount of time. In the past, most cure cycle

designs for newly developed composite systems are based upon the technique of trial

and error. Several simulation models [1-3] have been developed recently for curing

various epoxy matrix composites. This development represents a significant

advancement in computerizing the cure cycle design. An attempt [4] has been

made recently to incorporate thermal optimal design techniques with such

analysis capabilities to systematically establish the "best" curing process. The

research progress regarding the computational aspects of the thermal design

sensitivity analysis is reported in thls paper.

*The research reported here is sponsored by NASA Langley Research Center under NASA

Grant NAG-I-561.
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The derivative of the thermal response with respect to the design variable is

usually called the thermal design derivative or sensitivity. The information of the

design derivative is not only very useful for the trade-off design, but it is also

required for an iteratlve design optimization. The calculation of design

derivatives in thermal problems has attracted research interests in such areas as

deslgn of space structures subject to temperature constralnts [5], and chemical

process control [6,7]. The thermal system studied in this paper can be stated as a

heat conduction problem coupled with chemlcal-klnetlc reaction during the cure

process, while the temperature of cure cycle is considered as a design variable.

If. MATHEMATICAL FORMULATION OF CURING PROCESS

During the curing process, the temperature distribution T(x,t) and the degree

of cure a(x,t) of the resin inside the composite depend on the rate at which heat

is transmitted from the environment into the material. The heat conduction model

for a piled composite with its thickness 2h during the curing process can be found

as

5T 52 T

pc-_= k--
5x 2

with the boundary conditions,

5T (0 _t) = 0
_x

+ PHR& (I)

0 _t4T

(2)

T(h,t) = T (t), 0 (t(T
c

and the initial condition

T(x,0) = T (x), 0(x(h, (3)
o

where p is the mass density, c is the coefficient of heat capacity, k is the heat

conduction coefficient, and H R is the total or ultimate heat of reaction during the

curing process. The last term in equation (i), PHR_ , denotes the rate of heat

generated by chemical reaction which can be expressed by cure kinetics.

Two models of cure kinetics are investigated here. One is the chemlcal-klnetlc

reaction of Hercules 3501 during press processing [I]. The chemical-klnetlc

reaction can be determined in terms of the degree of cure, a, which is given

experimentally from reference [2] as

fl(a,T,t) = (KI+K2a) (l-a) (B-a), 04a<0.3

: { <4>
f2(a,T,t) = K3(l-a), 0.3<a

with the initial condition a(x,0) = 0 and the following definitions:

K 1 = AA 1 • Exp(-AEI/RT )

K 2 = AA 2 • Exp(-AE2/RT )
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K3 = AA3 • Exp(-AE3/RT )

where AAI, AA2, AA3, AE1, AE2, AE3, R and B are material constants, and T is K°

temperature. Note that the rate of cure presents discontinuity at ==0.3.

The second example is taken from the results of compression molding of a

polyester [3]. The degree of cure of resin in terms of temperature is given as

= (K1 + K2 _m) (I-_) n (5)

where m and n are constants, and K 1 and K2 are exponential functions of temperature.

Note that in equation (2), the temperature Tc(t ) on the surface of the piled
pre-pregs is called the cure temperature. The cure temperature can be controlled by

the processor and is considered as a design variable. Moreover, the performance

index of interest is the temperature uniformity qb which may be defined as the least

square of the deviation between the pointwise temperature and the averaged

tempera ture as

T h h

d)= f {f T 2 dx- (f T dx)2/h} dt (6)

o o o

Some observations of interest are mentioned here:

I. The state equations of the cure process are coupled with two state variables,

the temperature distribution T(x,t) and the degree of cure _(x,t).

.

3.

The nonhomogenous boundary value, Tc(t) , is the design variable.

The rate of cure, _ in equation (4), exhibits discontinuity, as does the last

term PHR_ in the equation of heat conduction.

The heat conduction problem stated in equations (I) to (3) can be simplified to

an equation of T(x,t),

_)2 _ T + (T+Tc) (7)pc -_ = k pc PHR&
_x2 c

with the homogeneous boundary conditions,

8'_(0, t)
8x -- 0, 0_t_T

T(h,t) = 0, 04t(T

(8)

and the initial condition,

T(x,0) = TO (x) - Tc(0), 0(x4h,

by introducing the following replacement of the temperature T(x,t):

(9)
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T(x,t) = T(x,t) + Tc(t) (i0)

It is no ted that the initial temperature T o(x) of the composite laminate is

identical with the initial cure temperature for most applications. Therefore,

equation (7) might have not only homogeneous boundary conditions but also a

homogeneous initial condition. Moreover, the design variable Tc(t ) now appears on

the right side of equation (7). In other words, the design variable is now involved

in terms of heat generation, instead of being a boundary condition. It is also

noted that the replacement of T(x,t) doesn't change the structure of the performance

index _, i.e.,

T h h

qb = f {f _2 dx- (f Tdx)2/h} dt (II)

o o o

In general, the cure temperatures recommended by resin manufacturers consist of

linear segments. As an example, the cure temperature recommended for the Hercules

3501-6 resin is shown in Fig. i. Consequently, the right side of heat conduction

equation (7) has discontinuous terms of pcT as well as PHR_. The term PHR_c

shows discontinuities in both x and t dimensions. The term pcTc, on the other

hand, is discontinuous along the t dimension only. Such discontinuities pose

numerical difficulties for calculating the design derivatives, especially, when the

time or the place at which these discontinuities occur is subjected to change due to

the perturbation of the design variable. It is easy.to see that the term PHR& is

of this nature. Note that the discontinuity of _ is determined by a state

variable%dependent jump condition at a(x,t) = 0.3. Thus, the discontinuity of the

term PHR_ will take place at the new critical time t and the new position x so

that _(x,t) = 0.3 for a perturbed state variable _. Also the discontinuous point

of the term pcT can be shifted, if the time interval of the junction point of
c

constant and variable temperatures of the cure temperature profile, such as T 1 in

Fig. i, is considered as a design variable.

III. LOGICAL FUNCTION MODELLING

Quite a few engineering examples whose state variables show discontinuities in

derivatives can be found in the multi-state control problems [8], and the mechanical

systems with intermittent motion [9, I0]. However, the derivative discontinuities

of those examples are associated with time dimension only.

The intermittent motion is characterized by the occurrence of nearly

discontinuous force and velocity caused by impulsive force, impact, mass capture,

and mass release. The optimal design problems of mechanisms with intermittent

motion have been discussed by Huang, Huag and Andrews [9]. Their method is based on

the identification of critical times at which discontinuities in forces or

velocities occur [8]. The overall time interval of analysis can be divided into a

number of subintervals based on those critical times. The jump conditions of state

variables are then employed in an adjoint variable approach to determine the

discontinuities of adJoint variables. The adjoint variables are then used for the

calculation of design sensitivity coefficients. In employing this approach, an

a priori knowledge of the critical times is required. The determination of the

critical times of jump conditions, however, may lead to a rather complex logic for
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digital computer programming. In order to avoid these complexities, Ehle and Huag

[i0] introduced a "logical function" to smoothly approximate discontinuities, and

then calculated the design derivatives by the standard adjolnt variable technique.

An example in their work shows that the proper selection of the sizes of the time

step and the transient zone used for discontinuity approximation is crucial to the

accuracy of design sensitivity calculation. However, making such a selection is

difficult. Nevertheless, the logical function approach is used in this study. The

reason is that _ is a function of time as well as spatial position. As a result,

keeping track of the _ discontinuity at every spatial position is a very difficult

task for numerical analysis.

As mentioned earlier, logical functions can be used to represent a sequence of

logical events. A logical function L(z,e) is a continuous function which smoothly

approximates a Heavlslde step function H(z) within a given region 0<z4e for a small

number e. The symmetrical step function H(z) is defined as:

0, z<0

1
H(z) = y, z = 0

i, z> 0.

The logical function employed here is given in reference [I0] as:

L(z,e) = 1 IzJ 2n+l + z2n+l

1 el2n+l e)2n+l2 izl2n÷l [iz_ -(z- ]

where n is an integer selected in order to ensure the continuity of the derivative

up to order d, i.e., 2n+l>d. The n is taken as I in thls study. The approximation

of the logical function is shown in Fig. 2. Note that the values of a logical

function L(z,e) are 0, 1/2 and 1 for z=0, e/2 and e, respectively, and the

transition width e defines the region of approximation. The value of the logical

function is exactly identical wlth the Heavlslde step function outside the

approximation region.

In using the logical function method, one is free to choose a wlde variety of

arguments that determine the transition point for a logical function. As an

example, the transition condition _=0.3 for the degree of cure can be used to define

a logical function L(0_-0.3,e) such that L(_-0.3,e) = 1 when _>0.3+e, and

L(0_-0.3,e)=0 when _40.3. Based on this definition, the logical function can be used

to compress the equation of cure kinetics into a compact form:

= fl " [i - L(_-0.3, _)] + f2 " L(_-0.3, E) (12)

Note that the above single equation of cure kinetics is the same as the original

equation over the entire tlme interval of analysis outside the transition period.

Furthermore, since the logical function is a smooth function of _, there is no

discontinuity in the _ of the preceding equation. Thus, the analysis of the design

sensitivity can be simplified to a great extent, because there is no need to monitor

the perturbation of _ discontinuity. Note that the value of _(x,t) in equation

(12) can be calculated by the linear combination of shape functions and nodal values

obtained by the finite element analysis. Similarly, the discontinuity in T can be
c

smoothed out in the same manner. Again, using the cure temperature profile
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indicated in figure 1 as an example, the first discontinuity at
expressed as

= a[l - L(t - TI, e)]c

t=T1 can be

(13)

It is then easy to consider the junction point T 1 as a design variable based upon

the above equation.

as

Finally, the heat conduction equation stated in equation (7) can be expressed

2

= k --+ g __(T,_,TI)pc
Dx2

k -- -

D2_

5x2
pc a • [I - L(t - TI, e)]

+ PHRf I • [I - L(_-0.3, e)] + PHRf 2 • L(_-0.3, e) (14)

for the cure cycle given in figure i. Similarly, the equation of the degree of cure

given in equation (12) can be rewritten here,

= f(T,a,T 1 )

= fl " [i - L(_-0.3, _)] + f2 " L(e-0.3, e) (15)

The finite element discretization is then introduced to convert the above

initial-boundary value equations into a set of first order differential equations:

[C] {T} + [K] {T} = {F({T}, {e})} (16)

and

[N] {_} = {G({T}, {_})} (17)

Quadratic and linear polynomials are used to interpolate the states of

temperature distribution and degree of cure, respectively. Note that the right side

vectors of the above two matrix equations are different. This is because the trial

functions for equations (14) and (15) are different.

The finite-element discretization can also be used to simplify the expression

for the performance index of concern into a single integral:
T

$ = f ({_}T [C] {T}- {_}T {p} {p}T {T}/h) dt (18)

o

where the [C] is same as the one defined in equation (16)_ and the components of the

vector {P} are obtained by integrating the quadratic shape functions of temperature.

This set of equations (16) and (17) is then solved simultaneously by a

numerical integration code called DE [ll]. The DE program is one of predictor-
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corrector integration algorithms using the Adamsfamily of formulas. The truncation
error is controlled by varying the step size and the order of the method. The DE
program has the capability to handle moderately stiff equations which often occur in
the problems of chemical kinetics. To preserve the accuracy of analysis, the
temperature distribution and the degree of cure are subjected to the same numerical

error tolerance during the numerical integration.

IV. DESIGN SENSITIVITY ANALYSIS

In general, there are four ways to calculate the thermal design derivatives,

i.e., the finite - difference method, Green' s function approach, the direct

differentiation method and the adjolnt variable technique. The last two are often

mentioned in the literature [12-15]. Both methods lead to a set of linear equations

that have a structure similar to the original system.

The computational efforts regarding the direct differentiation method and the

adjolnt variable method depend mainly on the numbers of constraints and design

variables of concern. The direct differentiation method requires the solution of a

differential equation for each design variable; while the adjolnt variable method

requires the solution of an adjolnt equation for each constraint. Consequently, the

direct differentiation method is more efficient in calculating the design

derivatives than the adjolnt variable method when the number of design variables is

less than the number of constraints, or vice versa.

It is known that the direct differentiation method provides equations of design

derlvatlves which can be integrated forward, Instead of backward to solve the

adjolnt variables. The equations of design derivatives can, therefore, be solved

simultaneously with the original system of equations and are subjected to the same

numerical error tolerance. Furthermore, the approach of direct differentiation

provides, without extra efforts, the time histories of design derivatives of

functlonals and state variables. This information can be used by a designer to

reconstruct the design space. One may check this information to see whether a

design variable of concern contributes to the perturbation of the performance index

consistently over a long or short period of time. As an example, the time histories

of design derivatives of various pollutants' concentrations with respect to emission

and meteorological parameters are studied and used in reference [16] to improve the

mathematical model of air quality. In this study, the direct differentiation method

and the adjolnt variable technique, in conjunction with the logical function method,

is used for the calculation of thermal design sensitivities.

The calculation of design derivatives using the direct differentiation method

is straightforward. For example, let T 1 in Fig. 1 be the design variable. The
direct differentiation of equations (14) and (15) yields

_, D2_,

pc "_" = k_-
bx2

pc a L'(t-T I, e)

Dfl 5fl

+ PHR(_-&-- _' +-- T') • [I - L(_ - 0.3, e)]
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and

Df2 Df2

+ PHR(_--_' +- 3') 5(,o:-0.3, e) + pS d__L_L_, • (f _ f )
[53 R da 2 i

Df I Df 1

_' = (-_- a' +--T') • [I - L(a - 0.3, e)]

(19)

5f2 5f2 -

+ (_--_' +--T') • L (_- 0.3, e)

dL a,
+ -_ (f2 fl )

(20)

where the prime indicates the design derivative with respect to T I. The derivative

of the logical function dL/d_ is an approximation of a delta function which can be

derived from the definition of the logical function L. From equations (8-9) and the

initial condition of _(x,o) = 0, the boundary and initial conditions for design

derivatives, T'and _', can be derived as

DT' (o, t)

_x = 0, 0_t_T
(21)

and

T'(h,t) = 0, 0(t4T

T'(x,o) = - T '(o), 04x4h
c

(22)

='(X,O) = 0 , 0(x(h

where T' (o) is usually zero unless the initial control temperature T '(o) is
c c

considered as a design variable. With these boundary and initial conditions, the

last two c_upled linear equations can be solved numerically for the design

derivatives T' and _'.

Based on the same finite element discretization as used in solving the original

system, equations (19) and (20) can be converted into a set of linear ordinary

differential equations:

[C] {3'} + [K] {3'} = {H({T}, {_}, {3'}, {_'})} (23)

and

[N] {_'} = {Q({T}, {_}, {T'), {_'})} (24)

Note that the coefficient matrices of equations (23) and (24) are similar to those

of equations (16) and (17). However, {T} and {_} appear in equations (23) and
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(24). Thus, the numerical integration of equations (16) - (17) and (23) - (24) can

be performed simultaneously so as to maintain_ equal accuracy between state

variables ((T}, {_}) and design derivatives ({T'}, {a'}). The DE program,

mentioned previously, is employed as an integrator to obtain the numerical results

of design derivatives.

The values of the design derivative of temperature {T' } can then be directly

substituted into the following equation to calculate the thermal design derivative

of the performance index:

T

+' =2f

o

{_}T [C] {T'}- {_}T {p} {p}T {_,}/h) dt (25)

The above equation is derived from equation (18) by using the direct differentiation

me thod.

Regarding the computational efficiency of the direct differentiation method, it

is worthwhile mentioning two notes here:

i. Because the coefficient matrices of {T'} and {_' } are identical to those

of {T} and (_}, the triangular factorizations of matrices [C] and [M] need

to be done once only. The calculation of {3} and {_} can be carried out by

back substitution for each of design variables.

. Compared to the original system equations, the right side of equations for

computing {7'} and {_'}, such as equations (23) and (24), may have

different frequency contents. Thus, to maintain the same numerical

accuracy, a smaller time step At may be required for the DE program to

solve the pairs ({7}, {_}) and ({T'}, {_'}) simultaneously.

A major step in the adjoint variable method is deriving the adjoint equations

to solve the design derivatives of equations (18) in terms of state and adjoint

variables. In order to do so, one may extend the performance index _ of equation

(II) as, using T 1 as a design variable,

T h h _
_b = f f ([T-f _ dx] T} dx dt

o o o

T h h-

T dx] T} dx dt

o o o

T h _)_ _2_

+ f f {k [pc-_- k---
o o 5x2

g(T,o,TI)] +

Da f(T TI)]} dx dts '='
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where _(x,t) and s(x,t) are two arbitrary functions. Note that the last integral is
zero because of state equations (14-15). Taking the design derivative of the above
equation with respect to TI and integrating by parts, it follows that

T h
bg _ bf

42'= f f (- k ()rl s -_I ) dx dt
o o

T h _)k 52 k

+ f j" [- pc-_- k---
o o _x2

k bg 5f h _ _
-- - s -- + 2(T-I _ dx)] T' }dx dt

o

T h
_s

+ f f {[-
o o

Df 5g 0_'}dxdt

T

+f
o

5T' bk_, Ih(- kk--_ + k _ ) dt
o

h

+f
o

T(pckT' + s=' ) dx

o

(25)

Note that the only two unknowns in the above equation are the design

derivatives T' and 6'. One may now specify the variables k and s in such a way that

all terms associated with T' and =' are dropped. This can be accomplished by

introducing the following adJoint equations for k and s:

and,

Dk 52k 5g 5f
0 = pc _+ k--+ k + s ---

Dx2 BT BT

_f
_s _g+ s-

O =-_+ k _ _

with the terminal conditions,

h __

T dx)

o

(26)

(27)

k(x,T) = O, O(x(h, (28)

S(x,T) = 0

and the boundary conditions,

_k t) = 0(o,

O¢x¢h, (29)

O_t_T, (30)

k(h,t) = O, 0¢t¢T, (31)

Then, the combination of equations (25 - 31) provides a simple formula for the

design derivative of the functional,
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T h
+,=/ /

o o

_g _Sf

(-k-_l- S _i ) dx dt

(32)

h

+/
o

!

pc k(x,O) Tc (0) dx

Equation (32) shows that the design _derivative of qb , namely, ,_' is a

functional of the state variables a and T, and the adjoint variables k and s.

Since the adjoint variables of equations (26 - 27) form an "adjoint" diffusion-

reaction system similar to the original one, the same numerical scheme used to solve

the state variables _ and T can be extended here to compute the adjoint

variables s and k. For instance, using the shape functions of _ and T in equations

(16 - 17) to interpolate the adjoint variables k and s obtains the following matrix

equations for nodal values of k and s,

[C] {_} = [K]{k} + {R ({T}, {o_}, {k}, {s})} (33)

[N]{s} = {S({T}, {=}, {k}, {s})} (34)

with the proper boundary and terminal conditions.

In general, the adjoint equations cannot be solved simultaneously with the

original system equations. Because of the terminal conditions, the adjoint

equations can be solved by either the backward integration along the real-time t-

axis directly or the forward integration along the artificial time t*-axis by

changing the independent variable t to t* as t* = T-t. However, both approaches

require the solutions of the original system equations prior to solving the adjoint

equations.

In the derivation of design derivatives, it has been assumed that T(x,b,t)

and m(x,b,t) have enough regularity in the time-spatial domain and in the design

space.

V. NUMERICAL EXAMPLES AND RESULTS

Four examples are presented in this section to discuss the numerical accuracy

of the logical function approximation and the methods for calculating the thermal

design derivatives. The accuracy of the thermal design sensitivity analysis is

checked, based on the fundamental definition of design derivatives which states that

they can be approximated by the finite difference. In other words, it is

mathematically true for a small perturbation of design variable AT so that:
C

_ d+ ~ A+
qb' -

dT AT
c c

The perturbation of the design variable AT is defined as the difference between a
C

perturbed design Tc* and the nominal design Tc, i.e.,

AT =T -T
C C c
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As a result of the above definitions, it follows that

A+ - + (Tc ) - +(rc)

= +' • _ (35)
c

The above equation provides a simple means to check the accuracy of the design

sensitivity analysis.

The first example presented here deals with the curing process of compression

molding (equation (i) and (5)) in which the cure temperature of the process is

assumed to be a constant temperature. The nominal cure temperature is taken as

4230K, and there is no discontinuity involved. According to the approximation

defined in equation (35), the results shown in figure 3 demonstrate the validity of

the direct differentiation method for the thermal design sensitivity analysis.

The second example, on the other hand, refers to the curing process of press

processing (equation (I) and (4)) in which a jump condition appears in the

derivative of the degree of cure. The profile of the cure temperature is assumed to

be Tc(t) = bo + b It where the initial temperature b o and heating rate b I are

considered as design variables. The nominal values of b o and b I are taken as

2900K and 1.70K/sec . The changes of the performance index with respect to the

values of bo and b I are calculated by using the direct differentiation method as

A@ = -0.3158-Ab
o

A_ = 2.6336"Ab 1

However, using the adJoint variable technique obtains

A_ = -0.0367.Ab
o

Adp = 8.099.Ab I

The results indicated in Tables 1 and 2 show that the direct differentiation method,

in conjunction with the logical function approximation, performs very well even for

a thermal problem with discontinuous derivatives. It is also shown in Table 2 that

the relation between the performance index and the heating rate b I is highly

nonlinear. In this example, the transient width e of equation (15) is defined as

10 -4 second which is the smallest time step size allowed in the DE program.

Next, the thermal design derivative of the compression molding is studied, with

the cure temperature being given in figure 4. The value of TI, where the rate of

the cure temperature changes, is considered as a design variable. In this study,

the nominal value and the perturbation of T 1 are taken as 40 seconds and 1 second,

respectively. The discontinuity of T at T I can be smoothed by equation (13). The
c

upper curve shown in figure 5 is obtained by using the direct differentiation method

based on equation (13). On the other hand, the lower curve displayed in figure 5 is

obtained by using the following expression for the design derivative of T :
c

274



d_c t _ T 1

The design derivative of T at the junction point, TI, is a delta function which is
c

not included in the above equation. The results in figure 5 clearly show that the

design derivative of the jump condition should be considered in the sensitivity
calculation.

It is easy to obtain the time histories of design derivatives of state

variables using the direct differentiation approach. Using this information, the

processor can investigate whether a design variable of concern contributes to the

change of system performance consistently over a long or short period of time so as

to reconstruct the design space. For example, figures 6 and 7 show that the change

of the design variable T 1 has a significant effect on the temperature and the degree

of cure on the surface of the pre-pregs when the time is 42 seconds.

The distribution of thermal design derivatives =' and T' along the thickness of

the pre-pregs is shown in figures 8 and 9 for different instants of time. It is of

great interest to see that the most significant changes of T and a due to the change

of the junction point T1 happen around 80 seconds and at 2.5 mm from the surface of

pre-pregs.

In this example, the various values of transient width, regioned from 10-2

second to 10-4 second are chosen to be used in the logical function approximation.

The sensitivity results obtained accordingly are essentially the same. This

indicates that the value of the transition width in the range of study has no

significant effect on the accuracy of the sensitivity analysis. The transition
width e is taken as 10-3 second in the results reported in figures 6 to 9.

Finally, the cure temperature of the press process studied herein is again the

same as the one shown in figure I. With I00 minutes as the nominal value, T 1 is
considered as a design variable. Thus, both equations (12) and (13) should be used

to approximate the jumps in _ and _ smoothly for the thermal problem of the press
c

process. The results of sensitivities calculated by the direct differentiation

method are in good agreement with the actual changes calculated by the finite

difference method as shown in figure I0. The transition regions used in this

example are 10-4 second and 10-2 second for equations (12) and (13), respectively.

VI. (X)NCLUSIONS

It is quite common to have empirical formulations appear in the state equations

modelling the composite curing process. These empirical formulations may introduce

discontinuous state derivatives into the state equations. A simple method which

uses the logical function approximation is introduced in this paper to perform the

thermal design sensitivity analysis for such state equations.

Based on the numerical study, it is obvious that the direct differentiation

method provides more accurate results than the adjoint variable method does. The

direct differentiation method also yields the time histories of the design

derivatives. In addition, the information of design derivatives of the pointwise
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constraints can be obtained by using the direct differentiation method without extra
cost. It is thus concluded that for the transient problem in this study, the direct
differentiation method is superior to the adjoint variable technique in terms of
accuracy and physical interpretation of results•
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TABLE I DESIGN SENSITIVITY RESULTS FOR DESIGN

VARIABLE bo IN EXAMPLE I

bo $ A_ (Direct Diff) (Adjoint)

290.0 26.217 ....

289.9 26.248 0.0315 0.0316

289.8 26.280 0.0628 0.0632

289.7 26.311 0.0940 0.0948

289.5 26.313 0.1559 0.1579

289 26.525 0.3077 0.3157

0.0037

0.0073

0.0110

0.0183

0.0367

TABLE 2 DESIGN SENSITIVITY RESULTS FOR DESIGN

VARIABLE b. IN EXAMPLE I
L

bI $ A_

_i. Ab 1

(Direct Diff.) (Adjolnt)

.700 26.217 ....

.702 26.222 0.00497 0.00527

.706 26.230 0.01312 0.01580

.708 26.233 0.01633 0.02107

.710 26.236 0.01898 0.02637

.730 26.234 0.01713 0.07901

.750 26.189 -0.02805 0.13168

.800 26.962 -0.25457 0.26336

0.01620

0.04859

0.06479

0.08099

0.24297

0.4050

0.8099
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